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Abstract
We investigate the dynamics of critical fluctuations in binary fluid membranes
using a two-dimensional hydrodynamic model with momentum decay to the
surrounding water. In particular, the decay rate of concentration fluctuations is
obtained analytically. In the limit of small wavenumber q with respect to the
correlation length, the decay rate is proportional to q2, as usual. In the large-q
limit, however, the effective diffusion coefficient increases only logarithmically
with q .

Biological membranes typically contain various components such as lipid mixtures, sterols, and
proteins that are indispensable to cell functions [1]. Rather than being uniformly distributed
in the membrane, there are growing evidences that some intra-membrane components are
incorporated in domains arising from lateral lipid segregation in membranes. This phenomenon
has attracted great interest in the context of ‘rafts’ [2], i.e., liquid domains rich in cholesterol,
saturated lipids (typically sphingomyelin lipids), and in some cases particular proteins [3].
Cholesterol-rich domains have been directly observed in model membranes composed of lipid
mixtures and cholesterol, using advanced fluorescence microscopy [4–6].

Recent researches have focused on the dynamical aspect of lateral phase separation in
mixed membranes. For example, Veatch and Keller observed domain formation in giant
vesicles consisting of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine
(DOPC), and cholesterol [7]. Depending on the composition, phase separation occurs through
either domain ripening or spinodal decomposition. Saeki et al reported that the average domain
size develops with time as ∼t0.15, which is a very slow process [8]. In the experiment by
Yanagisawa et al, two different types of domain coarsening were observed, i.e., ‘normal
coarsening’ and the ‘trapped coarsening’ [9]. In the former case, the growth law is found to be
∼t2/3, whereas in the latter case, domain coarsening is suppressed at a certain size. Moreover,
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domain growth and budding in phase-separating fluid vesicles were investigated by means
of several simulation methods such as the time-dependent Ginzburg–Landau approach [10],
Monte Carlo simulation [11], or dissipative particle dynamics [12].

In this letter, we investigate the dynamics of two-component fluid membranes from the
theoretical point of view. Taking into account the effect of hydrodynamic interaction within the
membrane, we calculate the decay rate of the time-correlation function of the concentration
fluctuations. Since fluid membranes are sandwiched by surrounding water, we use a two-
dimensional hydrodynamic equation with momentum decay to this water. Such an equation has
previously been used to calculate the diffusion constant of proteins [13–16] or polymers [17]
moving in membranes. Our formulation closely follows that in [18], which deals with the
dynamics of microemulsions. An effective diffusion coefficient is calculated in the entire range
of wavenumber. In the large-wavenumber limit, the effective diffusion coefficient depends
logarithmically on the wavenumber, which is in contrast to the case for three-dimensional
critical fluids. Although there have been no experimental reports on concentration fluctuations
in membranes, they could be measured in the near future since the critical point has been
determined in various phase diagrams of multi-component membranes [4, 6, 7].

We consider a two-component fluid membrane composed of lipid A and lipid B (or
cholesterol) whose local area fractions are denoted by φA(r) and φB(r), respectively (r is the
two-dimensional vector). Since the relation φA(r)+ φB(r) = 1 holds, we introduce a variable
defined by ψ(r) ≡ φA(r) − φB(r). The simplest form of the free-energy functional F{ψ}
describing the fluctuation around the homogeneous state is

F{ψ} =
∫

dr
[

a

2
ψ2 + c

2
(∇ψ)2 − μψ

]
, (1)

where a > 0 is proportional to the temperature difference with respect to the critical
temperature, c > 0 is related to the line tension, and μ is the chemical potential.

Next we discuss the hydrodynamics of the fluid membrane. Introducing the two-
dimensional local velocities vA and vB for each component, we define the average local velocity
by v = φAvA + φBvB, which satisfies the incompressibility condition:

∇ · v = 0. (2)

Although a lipid membrane can be regarded as a two-dimensional viscous fluid, it is not an
isolated system since lipids are coupled to the adjacent water. Accordingly, the momentum
within the membrane can leak to the outer fluid. Such an effect can be phenomenologically
taken into account through a momentum relaxation term in the two-dimensional hydrodynamic
equation [13–17]. Moreover, a thermodynamic force due to the concentration fluctuations
should also be included [19]. Then the hydrodynamic equation for a mixed fluid membrane
can be written as

ρ

[
∂v
∂ t

+ (v · ∇)v
]

= η∇2v − ∇p − λv − ψ∇ δF

δψ
, (3)

where all the vector operators are two dimensional. In the above, p is the pressure, and the
constants ρ and η are the density and dynamic viscosity of the lipid membrane, respectively5.
The phenomenological parameter λ is inversely proportional to the momentum relaxation time
which reflects the coupling strength between the membrane and the surrounding water. Within
the present treatment, thermal fluctuations of the membrane shape are ignored. Details of the
physical meaning of λ will be discussed later.

5 The dimension of η is that of three-dimensional viscosity times length such as the membrane thickness.
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The time evolution of concentration in the presence of hydrodynamic flow is given by the
time-dependent Ginzburg–Landau equation for a conserved order parameter [18]:

∂ψ

∂ t
+ ∇ · (vψ) = L∇2 δF

δψ
, (4)

where L is the kinetic coefficient. Equations (1)–(4) provide the complete set of differential
equations to be solved.

In the following, we assume that the relaxation of velocity v is much faster than that of
concentrationψ , so the left-hand side of equation (3) can be neglected. In this case, the velocity
can be formally solved from equations (2) and (3) as

vα(r, t) =
∫

dr′ T αβ(r, r′)(∇′
βψ)

δF

δψ(r′)
, (5)

where T αβ(r, r′) is the two-dimensional Oseen tensor which takes into account the extra
dissipation due to the surrounding fluid. Defining the Fourier transform by

T αβ(r) =
∫

dq
(2π)2

T αβ
q eiq·r, (6)

we obtain

T αβ
q = 1

η(q2 + κ2)

(
δαβ − qαqβ

q2

)
, (7)

where q = |q| and κ−1 ≡ (η/λ)1/2 is the hydrodynamic screening length. Equation (7) reduces
to the usual Oseen tensor when κ → 0. Since we are interested in the concentration fluctuations
around the homogeneous state, we define δψ(r, t) = ψ(r, t) − ψ̄ , where the bar indicates a
spatial average. Then the free-energy functional (1) is expanded in powers of δψ as

F{δψ} =
∫

dr
[

a

2
(δψ)2 + c

2
(∇δψ)2

]
. (8)

Then the static correlation function is given by

χq = 〈δψqδψ−q〉 = kBT

c(q2 + ξ−2)
, (9)

where kB is the Boltzmann constant, T the temperature, and ξ ≡ (c/a)1/2 the correlation
length. Substituting equation (5) into (4), we obtain
∂δψ(r, t)

∂ t
= L∇2 δF

δ(δψ)
−

∫
dr′(∇αδψ(r))T αβ(r, r′)(∇′

βδψ(r
′))

δF

δ(δψ(r′))
, (10)

for the dynamics of the concentration fluctuations.
Using the above equation, we now consider the dynamics of the time-correlation function

defined by

S(r, t) = 〈δψ(r1, t)δψ(r2, 0)〉, (11)

where r = r2 − r1. With the use of the factorization approximation6, the spatial Fourier
transform of S(r, t) satisfies the equation

∂Sq(t)

∂ t
= −(�(1)q + �(2)q )Sq(t). (12)

The first part of the relaxation rate �(1)q corresponds to the so-called van Hove part, which is
simply given by

�(1)q = LkBT q2χ−1
q = Lcq2(q2 + ξ−2). (13)

6 More precisely, the fourth-order correlations are approximated as 〈(∇αδψ(r1, t))(∇βδψ(r2, t))δψ(r3, t)δψ(r4, 0)〉 ≈
〈(∇αδψ(r1, t))(∇βδψ(r2, t))〉〈δψ(r3, t)δψ(r4, 0)〉. See [18] for details.
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The second part of the relaxation rate, �(2)q , is the hydrodynamic part that is given by an integral

�(2)q = kBT

ηχq

∫
dp
(2π)2

χp
1

(p − q)2 + κ2

q2 p2 − (q · p)2

(p − q)2
. (14)

We first carry out the integral over the angle between p and q:∫ 2π

0
dθ

p2q2 sin2 θ

(p2 + q2 − 2pq cos θ)(p2 + q2 − 2pq cos θ + κ2)

= π

2

(
−1 +

√
[(p + q)2/κ2 + 1][(p − q)2/κ2 + 1] − |q2 − p2|/κ2

)
. (15)

Introducing the dimensionless quantities Q ≡ qξ and � ≡ κξ , we further perform the integral
over the magnitude of p to obtain the result

�(2)q = q2 DQ(�), (16)

with an effective diffusion coefficient

DQ(�) = kBT

8πη

Q2 + 1

Q2

[
Q2 + 1

�2
ln

(
�

Q2 + 1

)
− ln�+ �

2�2
ln

(
Q4+ + Q2− + Q2+�
�− Q2− − 1

)]
.

(17)

Here we have used the following abbreviations:

� =
√
(Q2 +�2 − 1)2 + 4Q2, Q± =

√
Q2 ±�2. (18)

For three-dimensional binary critical fluids, an analogous calculation yields the famous
Kawasaki function [20]. Its validity has been successfully confirmed by several dynamic light-
scattering experiments [21]. Equation (17) is the two-dimensional analogue of the Kawasaki
function, provided that the momentum can leak to the surrounding fluid.

In figure 1, we plot DQ(�) (scaled by kBT/4πη) as a function of Q = qξ for various
values of �. Since �(2)q can be generally expanded in terms of Q2 in the isotropic state,
DQ(�) is constant in the limit of Q 
 1. The effective diffusion coefficient starts to increase
when Q ≈ 1. All the curves are generally S-shaped, and an inflection point appears in the
intermediate Q-region. In the limit of Q � 1, the asymptotic form of equation (17) can be
approximately given by

DQ(�) ≈ kBT

8πη

[
ln

(
Q2 +�2

�2

)
+ Q2

�2
ln

(
Q2 +�2

Q2

)]
. (19)

If we plot this equation in figure 1 for different� values (not shown), they all coincide with the
exact result as long as Q > 1. Equation (19) can be further approximated as

DQ(�) ≈ kBT

4πη
ln(Q/�), (20)

when Q � �, or

DQ(�) ≈ kBT

4πη
(Q/�)2, (21)

when Q 
 � (except the logarithmic correction). Equation (20) shows that DQ(�) depends
only logarithmically on Q in the large-Q limit, i.e., Q � 1 and Q � �. This is an important
result of this letter. Such a weak wavenumber dependence should be contrasted with that in
three-dimensional critical fluids for which the effective diffusion coefficient increases linearly
with q (or the relaxation rate is proportional to q3) in the large-q limit [20].
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Figure 1. Scaled effective diffusion coefficient DQ(�) as a function of the dimensionless
wavenumber Q = qξ for� = 0.1, 1, 10 from top to bottom.

Next we argue the dependence of DQ(�) on �, which measures the coupling strength
between the membrane and the water. In figure 2, we plot DQ(�) against � = κξ for various
values of Q. When� is large, the momentum transfer from the membrane to the water becomes
faster. Under such conditions, the concentration fluctuations decay slowly because the velocity
field in the membrane is damped out quickly by the momentum transfer. Therefore, the effective
diffusion coefficient DQ(�) should be smaller for larger coupling strength, and DQ(�) is
a monotonically decreasing function of �. However, its �-dependence has two asymptotic
regimes, as obtained by equations (20) and (21): DQ(�) decreases only logarithmically with�
when Q � �, while it decreases algebraically (∼�−2) when Q 
 �. According to figure 2,
the logarithmically dependent regime increases for larger Q (compare Q = 10 and 100). This
is because the length scale of our investigation (q−1) is much smaller than the screening length
κ−1, and DQ(�) is hardly affected by the coupling effect.

From equation (17) the limiting value of DQ(�) for Q → 0 becomes

D0(�) = kBT

4πη

ln�

�2 − 1
, (22)

which is called the cooperative diffusion constant. This equation is plotted in figure 2 for
Q = 0. We note that equation (22) is not singular at � → 1 and gives a finite value
D0(�) = kBT/(8πη). Two further limits of equation (22) are

D0(�) ≈ kBT

4πη
ln(1/�), (23)

for � 
 1, and

D0(�) ≈ kBT

4πη
(1/�)2, (24)

for � � 1. These logarithmic and algebraic dependences on � are analogous to those given
in equations (20) and (21), respectively. It should be noticed that � is proportional to the
correlation length. The cooperative diffusion constant D0(�) is smaller for larger correlation
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Figure 2. Scaled effective diffusion coefficient DQ(�) as a function of � = κξ for Q = 0, 1,
10 and 100 from bottom to top. The line Q = 0 corresponds to the scaled cooperative diffusion
constant given by equation (22).

length ξ , as it should be. However, its dependence on the correlation length is different from
that of the three-dimensional cooperative diffusion constant, which is inversely proportional to
the correlation length ξ [20]. Moreover, equation (24) shows that the membrane viscosity η in
the denominator of D0(�) drops out since (1/�)2 = η/λξ 2. The fact that D0(�) is sensitive
to the coupling to the environment (represented by λ) has been pointed out recently for lipid
mixtures close to a critical point [22].

It is worthwhile comparing the obtained cooperative diffusion constant with the tracer
diffusion constant of a disc-like molecule with radius R moving in a two-dimensional fluid
with momentum decay. Based on the same hydrodynamic equation as in equation (3) (without
the thermodynamic force), the tracer diffusion constant was previously obtained as [13, 16]

D = kBT

4πη

(
z2

4
+ zK1(z)

K0(z)

)−1

, (25)

with z = κR. In the above, K0(z) and K1(z) are the modified Bessel functions of the second
kind of order zero and one, respectively. In the weak coupling limit, κR 
 1, equation (25)
becomes

D ≈ kBT

4πη

(
ln

2

κR
− γ

)
, (26)

where γ = 0.5772 · · · is Euler’s constant. Such a logarithmic dependence is consistent with
the result of Saffman and Delbrück [23, 24]. In the strong coupling limit, κR � 1, we have

D ≈ kBT

4πη

(
2

κR

)2

. (27)

Comparing these equations with equations (23) and (24), we can easily confirm that the
dependences on the correlation length ξ and the radius R are the same. Notice that η in
equation (27) drops out, as in equation (24). Indeed the validity of equation (25) was recently
confirmed by the measurement of diffusion constant of phase-separated domains in mixed
membranes [25].
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Finally, we discuss the physical meaning of the parameter λ in equation (3). When the
lipid membrane is placed on a solid substrate, the term −λv represents the friction, which is
proportional to the local membrane velocity relative to the substrate. Under the presence of
a thin liquid layer of thickness � between the membrane and the substrate, the laminar flow
gives rise to the friction η′v/�, where η′ is the fluid viscosity. This means that λ = η′/h� for a
membrane with thickness h [13].

When � is infinitely large, the flow of the fluid surrounding the membrane deviates from
laminar flow. In this case, Saffman and Delbrück obtained the diffusion constant in the weak
coupling limit by taking into account the surrounding flow [23, 24]. By comparing their result
and equation (26), we find that λ = η(2η′/hη)2 [17]. In the strong coupling limit, on the
other hand, a small deviation was found between equation (25) and the extended result of the
Saffman and Delbrück theory [13, 26]. In the strong coupling limit of Saffman and Delbrück
theory, the drag force comes not only from the cylinder walls of molecules but also from
the parts directly interacting with surrounding liquids [26]. Although the membrane-bound
molecules are assumed to be flush with the membrane interface, the results depend on whether
the molecules protrude into surrounding liquids or not in the limit [26]. Since equation (25)
correlates with the extended results of Saffman and Delbrück theory over a wide range of λ
values, our phenomenological approach is justified at least for the molecules that are flush with
the membrane interface. It should also be pointed out that the size of diffusing molecules should
be larger than that of the lipids composing the membrane in the Saffman and Delbrück theory.
Therefore, the applicability of equation (3) to a mixed membrane is rationalized for the laminar
flow of surrounding liquids but not justified from the model of Saffman and Delbrück theory.

In summary, we have calculated the decay rate of concentration fluctuations in a binary
fluid membrane which is coupled to the adjacent water. In contrast to the case of three-
dimensional critical fluids, the effective diffusion coefficient increases logarithmically with
wavenumber. Our prediction should be checked experimentally.

We thank T Kato for useful discussions. This work is supported by KAKENHI (Grant-in-Aid
for Scientific Research) on Priority Areas ‘Soft Matter Physics’ from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.
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